Обзор статьи

Применение аммиака в качестве моторного топлива для автомобилей, эксплуатируемых в условиях Арктического региона

УДК: 

621.43

DOI: 

10.23968/1999-5571-2022-19-2-129-134

Страницы: 

129-134

Аннотация: 

Статья посвящена вопросу применения аммиака в качестве топлива для автотранспортных средств, эксплуатируемых в условиях Арктического региона. Проведен сравнительный анализ различных видов топлив на основе водорода. Определены перспективы применения аммиака в качестве носителя водорода на борту автомобиля. Предложена система питания дизельного двигателя, основанная на процессе разложения аммиака с последующей добавкой водорода в качестве присадки к основному топливу.

Список цитируемой литературы: 

  1. Shukla A., Karmakar S., Biniwale R. B. Hydrogen delivery through liquid organic hydrides: considerations for a potential technology // International journal of hydrogen energy. 2012. Т. 37, №. 4. Рp. 3719-3726

  2. Wijayanta A. T., et al. Effect of pressure, composition and temperature characteristics on thermal response and overall reaction rates in a metal hydride tank // International journal of hydrogen energy. 2011. Т. 36, №. 5. Рp. 3529-3536

  3. Hadjixenophontos E. [et al.] A Review of the MSCA ITN ECOSTORE - Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity // Inorganics. 2020. Т. 8, № 3. Р. 17

  4. Kamiya S., Nishimura M., Harada E. Study on introduction of CO2 free energy to Japan with liquid hydrogen // Physics Procedia. 2015. Т. 67. Рp. 11-19

  5. Jia Y., et al.Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage // Renewable and Sustainable Energy Reviews. 2015. Т. 44. Рp. 289-303

  6. Eftekhari A., Fang B. Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors // International Journal of Hydrogen Energy. 2017. Т. 42, №. 40. Рp. 25143-25165

  7. Chamoun R., Demirci U. B., Miele P. Cyclic Dehydrogenation-(Re) Hydrogenation with Hydrogen-Storage Materials: An Overview // Energy Technology. 2015. Т. 3, № 2. Рp. 100-117

  8. Niaz S., Manzoor T., Pandith A. H. Hydrogen storage: Materials, methods and perspectives // Renewable and Sustainable Energy Reviews. 2015. Т. 50. Рp. 457-469

  9. Babu A. R. V., et al. Magnesium hydrides for hydrogen storage: A mini review // Int. J. ChemTech Res. 2014. Т. 6. № 7. Рp. 3451-3455

  10. Lai Q., et al. Hydrogen storage materials for mobile and stationary applications: current state of the art // ChemSusChem. 2015. Т. 8. № 17. Р. 2789-2825

  11. Kordesch K. [et al.] Ammonia as Hydrogen Source for an Alkaline Fuel Cell-Battery Hybrid System // Fuel Cell Seminar. 2003. Рp. 3-6

  12. Lu Y., et al. Novel microfibrous composite bed reactor: high efficiency h 2 production from nh3 with potential for portable fuel cell power supplies // Lab on a Chip. 2007. Т. 7. № 1. Рp. 133-140

  13. Hacker V, Kordesch K. Ammonia crackers. Handbook of fuel cells - fundamentals, technology and applications // Chichester: John Wiley and Sons Ltd. 2003. Т. 3. № 2. Рp. 121-127

  14. Liu Y., et al. Microfibrous entrapped Ni/Al2O3 using SS-316 fibers for H2 production from NH3 // AIChE journal. 2007. Т. 53. №. 7. Рp. 1845-1849

  15. Liu Y., et al. Monolithic microfibrous nickel catalyst co-modified with ceria and alumina for miniature hydrogen production via ammonia decomposition // Applied Catalysis A: General. 2007. Т. 328, № 1. Рp. 77-82

  16. Dolan M. D., et al. Tubular vanadium membranes for hydrogen purification // Journal of Membrane Science. 2018. Т. 549. Рp. 306-311

  17. Lamb K. E., et al. High-purity H2 produced from NH3 via a ruthenium-based decomposition catalyst and vanadium-based membrane //Industrial & Engineering Chemistry Research. 2018. Т. 57, №. 23. Рp. 7811-7816

  18. Lim D. K. [et al.] Solid acid electrochemical cell for the production of hydrogen from ammonia //Joule. 2020. Т. 4, № 11. Рp. 2338-2347

  19. Wang M., et al. Miniature NH3 cracker based on microfibrous entrapped Ni-CeO2/Al2O3 catalyst monolith for portable fuel cell power supplies // International journal of hydrogen energy. 2009. Т. 34, № 4. Рp. 1710-1716

  20. Ajanovic A., Glatt A., Haas R. Prospects and impediments for hydrogen fuel cell buses // Energy. 2021. Т. 235. Рp. 121-340

  21. Santos M. C., et al. Fuel Cells: Hydrogen and Ethanol Technologies. Sci // Mater. Eng. 2017. Т. 2017. Рp. 1-22

Авторы: 

Воробьев С. А. Санкт-Петербургский государственный архитектурно-строительный университет Санкт-Петербург, Россия

Никифоров О. А. Санкт-Петербургский государственный архитектурно-строительный университет Санкт-Петербург, Россия

Абызов И. Т. Санкт-Петербургский государственный архитектурно-строительный университет Санкт-Петербург, Россия

Другие статьи авторов: 

Выпуск журнала