УДК:
666.97.620.1
DOI:
10.23968/1999-5571-2017-14-4-72-80
Страницы:
72-80
Аннотация:
Рассматриваются приведенные в литературе результаты исследований, касающихся воздействия температуры при пожаре на изменение прочностных характеристик сталефибробетонов в диапазонах изменения температуры от 200 до 400 АС и от 400 до 1200 АС. Показано существенное различие в изменении характеристик сталефибробетона в этих диапазонах, обусловленное различной степенью дегидратации цементного камня и заполнителей, а также температурной коррозии фибры.
Список цитируемой литературы:
- Пушенко А. С. Высокопрочный бетон в условиях воздействия высоких температур при пожаре: дис. … канд. техн. наук. Ростов н/Д, 2008. 217 с
- ГОСТ 30247.0-94. Конструкции строительные. Методы испытаний на огнестойкость. Общие требования
- Deepthy S. Nair. Performance of steel fiber reinforced concrete under elevated temperature // Journal of Mechanical and Civil Engineering. 2016. May-Jun. Vol. 13, Issue 3, Ver. II. Pp. 13-17
- Jihwan Kim, Gyu Pil Lee, Do Young Moon. Evaluation of mechanical properties of steel-fibre-reinforced concrete exposed to high temperatures by double-punch test // Construction and Building Materials. 2015. Vol. 79. Pp. 182-191
- Ming-Xiang Xiong, J. Y. Richard Liew. Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after exposure to high temperatures // Materials and Constructions. 2015. October-December. Vol. 65, Issue 320
- Clotilda Petrus, Huurun Ain Azharb, Goh Lyn Deea, Ruqayyah Ismaila, Anizahyati Alisibramulisi. Compressive strength of concrete with fibres at elevated temperature // Journal Technology (Sciences & Engineering). 2016. 78:5-4. Pp. 71-74
- Yuh-Shiou Tai, Huang-Hsing Pan, Ying-Nien Kung. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 АC // Nuclear Engineering and Design. 2011. 241(7), 2416
- ASTM E 119-00а. Standard test methods for fire tests of building construction and materials
- Cheyrezy M., Maret V., Frouin L. Microstructural analysis of RPC // Cement and Concrete Research. 1995. 25 (7). Pp. 1491-1500
- Vikram J., Sekar S. K. Enhancement of concrete sustainability under temperature variation using hybrid fibre reinforcement // Indian Journal of Science and Technology. 2015. October. Vol. 8 (28)
- Shaikh F. U. A., Tawee M. Compressive strength and failure behavior of fibre reinforced concrete at elevated temperatures // Advances in Concrete Construction. 2015. Vol. 3, No. 4. Pp. 283-293
- EN 1994-1-2:2005 Eurocode 4. Design of composite steel and concrete structures. Part 1-2: General rules - Structural fire design
- Oana E. Cazan, Marius C. Gherman, Roxana P. Boldor, Tudor M. Brata. Hybrid Fiber Reinforced HPC at Elevated Temperatures // Acta Technica Napocensis: Civil Engineering & Architecture. 2014. Vol. 57, No. 2. Pp. 197-202
- Alan Lau. Effect of high temperatures on normal strength concrete and high performance concrete containing steel fibers. M. Phil. The Hong Kong Polytechnic University, 2003
- Gauri Kadam, V. S. Shingade. Compressive behavior of steel and PP fibers in HPC subjected to high temperature // IJARIIE-ISSN(O)-2395-4396. 2016. Vol. 2, Issue 4. Pp. 340-353
- P. Jyotsna Devi, Dr. K. Srinivasa Rao. A study on the flexural and split tensile strengths of steel fibre reinforced concrete at high temperatures // IJEAR. 2014. Jan - June. Vol. 4, Issue Spl-2. Pp. 49-53
- Sofren Leo Suhaendi, Takashi Horiguchi. Fiber-reinforced high-strength concrete under elevated temperature - effect of fibers on residual properties // Fire safety science - Proceedings of the eighth international symposium. 2005. Pp. 271-278
- Mohammed Ezziane, Laurent Molez, Tahar Kadri, Raoul Jauberthi. Properties of fibre mortars after exposure to high temperatures // Građevinar. 2014. Vol. 5. No. 66. Pp. 425-431
- Sideris K. K., Manita P., Papageorgiou A., Chaniotakis E. Mechanical Characteristics of High Performance Fibre Reinforced Concretes at Elevated Temperatures // ACI Special Publication. 2003. 06.01. Vol. 212. Pp. 973-988
- Wasan I. Khalil. Influence of high temperature on steel fiber reinforced concrete // Journal of Engineering and Development. 2006. June. Vol. 10, No. 2. Pp. 139-150
- Aminuddin Jamerana, Izni S. Ibrahima, Siti Hamizah S. Yazana, Siti Nor A. A. Rahim. Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature // The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5), Procedia Engineering 125, 2015. Pp. 818-824
- Muna Mohammed Karim. Effect of fire flame exposure on some properties of fiber reinforced high strength concrete // Journal of Babylon University. Pure and Applied Sciences. 2011. Vol. 19. No. 3. Pp. 1184-1197
- Saravanja M., Klingsch W., Anders S. Effects of different fibre materials and quantities of high temperature strength and explosive spalling of UHPC concrete // 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure. October 2011. Pp. 5-8
- Wenzhong Zheng, Baifu Luo, Ying Wang. Stress -strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures // Materials and Structures. 2015. Vol. 48. Pp. 2299-2314
- EN 1944-1-2 Eurocode 4. Design of composite steel and concrete structures. Part 1-2: General rules - Structural fire design
- ACI 216R-89 (Reapproved 1994). Guide for Determining the Fire Endurance of Concrete Elements
- Степанов В. Г., Степанюченко В. С. Обеспечение огнестойкости железобетонных строительных конструкций // Строительство и архитектура. 2008
- СТО НОСТРОЙ 2.27.125-2013. Освоение подземного пространства конструкции транспортных тоннелей из фибробетона. Правила проектирования и производства работ
- Swamy R. N. Fiber Reinforced Cement and Concrete // Proceedings of the Fourth RILEM Internal Symposium. London; New York: E & FN Spon, 1992
Ключевые слова: