УДК:
DOI:
Страницы:
Аннотация:
Список цитируемой литературы:
-
Sauzay M. Mechanical behavior of structural materials for Generation IV reactors // Structural Materials for Generation IV Nuclear Reactors. 2016. Pp. 191-252. DOI 10.1016/B978-0-08-100906-2.00006-9
-
Muroga T. Refractory metals as core materials for Generation IV nuclear reactors // Structural Materials for Generation IV Nuclear Reactors. 2016. Pp. 415-440. DOI 10.1016/B978-0-08-100906-2.00011-2
-
Toribio J., Vergara D., Lorenzo M. Hydrogen embrittlement of the pressure vessel structural materials in a WWER-440 nuclear power plant // Energy Procedia. 2017. Vol. 131. Pp. 379-385. DOI 10.1016/j.egypro.2017.09.464
-
Hsuan-Teh Hu, Jun-Xu Lin. Ultimate analysis of PWR prestressed concrete containment under long-term prestressing loss // Annals of Nuclear Energy. 2016. Vol. 87. Pp. 500-510. URL: https://doi.org/10.1016/j.anucene.2015.10.005
-
Karlsson B. I., Sozen M. A. Prestressed concrete deep slabs with openings. Nuclear Engineering and Design. 1973. Vol. 25 (2). Pp. 290-330. DOI 10.15554/pcij.05011977.64.79
-
Tavakkoli I., Kianoush M. R., Abrishami H., Han X. Finite element modelling of a nuclear containment structure subjected to high internal pressure // International Journal of Pressure Vessels and Piping. 2017. Vol. 153. Pp. 59-69. DOI 10.1016/j.ijpvp.2017.05.004
-
Young-Sun Choun, Hyung-Kui Park. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement // Nuclear Engineering and Technology. 2015. Vol. 47 (7). Pp. 884-894. URL: https://doi.org/10.1016/j.net.2015.07.003
-
Li C., Shu G., Xu B., Liu W. The resistivity calculation method of reactor pressure vessel steels after ion irradiation // Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2019. Vol. 451. Pp. 38-41. DOI 10.1016/j.nimb.2019.04.056
-
Narkunas E., Poskas G., Smaizys A. Impact of shield elements on the WWER-440 reactor pressure vessel activation // Annals of Nuclear Energy. 2019. Vol. 130. Pp. 394-401. DOI:10.1016/j.anucene.2019.03.008
-
Barros J. A. O., Taheri M., Salehian H., Mendes P. J. D. A design model for fibre reinforced concrete beams pre-stressed with steel and FRP bars // Composite Structures. 2012. Vol. 94 (8). Pp. 2494-2512. DOI 10.1016/j.compstruct.2012.03.007
-
Rashid Y. R. Ultimate strength analysis of prestressed concrete pressure vessels // Nuclear Engineering and Design. 1968. Vol. 7 (4). Pp. 334-344. DOI 10.1016/0029-5493(68)90066-6
-
Morozov V. I., Pucharenko Ju. V. Nuclear Reactor Shell of Heavy Ferrocement // World Applied Sciences Journal. 2013. Vol. 23, № 13 (Problems of Architecture and Construction). Pp. 31-36. DOI: 10.5829/idosi.wasj.2013.23.pac.90007. URL: http://citeseerx.ist.psu.edu/viewdoc/download/doi=10.1.1.388.7032&rep=re...
-
Морозов В. И. Корпуса высокого давления для энергетических, строительных и специальных технологий. СПб.: СПбГАСУ, 2011. 394 с
-
Swanson J. A. John Swanson and ANSYS - An engineering success story // Proceedings of the 2014 Winter Simulation Conference. Institute of Electrical and Electronics Engineers (IEEE), 2015. Pp. 3-4
-
Huei-Huang Lee. Finite Element Simulations with ANSYS Workbench 18. Theory, Applications, Case Studies. SDC Publications, 2018. 612 p
-
Морозов В. И., Михайловский А. С., Бурцев В. П. Напряженно-деформированное состояние корпуса высокого давления из тяжелого армоцемента с коническими торцовыми элементами // Строительные конструкции зданий и сооружений: межвуз. сб. № 5. Барнаул, 1989. C. 71-77
-
Chen C.-C., Lin K.-T., Chen Y.-J. Behavior and shear strength of steel shape reinforced concrete deep beams // Engineering Structures. 2018. Vol. 175. Pp. 425-435. DOI 10.1016/j.engstruct.2018.08.045
-
Sousa-Coutinho J. Properties of hardened concrete // ICE Manual of Construction Materials (Forde M. (ed.)). London: Thomas Telford, 2009. Pp. 153-167. DOI 10.1680/mocm.35973.0153
-
Bompa D. V., Elghazouli A. Y. Structural performance of RC flat slabs connected to steel columns with shear heads // Engineering Structures. 2016. Vol. 117. Pp. 161-183. DOI 10.1016/j.engstruct.2016.03.022
-
Гениев Г. А., Киссюк В. Н., Тюпин Г. А. Теория пластичности бетона и железобетона. М.: Стройиздат, 1974. 316 с
-
Moss D. R., Basic M. M. Pressure Vessel Design Manual. 4th ed. Elsevier, 2013. 832 p
-
Bao J. Q., Long X., Tan K. H., Lee C. K. A new generalized Drucker-Prager flow rule for concrete under compression // Engineering Structures. 2013. Vol. 56. Pp. 2076-2082. DOI 10.1016/j.engstruct.2013.08.025
-
Öztekin E., Pul S., Hüsem M. Experimental determination of Drucker-Prager yield criterion parameters for normal and high strength concretes under triaxial compression // Construction and Building Materials. 2016. Vol. 112. Pp. 725-732. DOI 10.1016/j.conbuildmat.2016.02.127
-
Yu T., Teng J. G., Wong Y. L., Dong S. L. Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model // Engineering Structures. 2010. Vol. 32(3). Pp. 665-679. DOI 10.1016/j.engstruct.2009.11.014
Ключевые слова:
- корпус высокого давления
- торцовый элемент
- толстая плита
- несущая стенка
- радиальные напряжения
- тангенциальные напряжения
- вертикальные напряжения
- внутреннее давление
- равномерно распределенная нагрузка
- шпонка
- контактный слой
- high-pressure shell
- end element
- thick slab
- load-bearing wall
- radial stresses
- tangential stresses
- vertical stresses
- internal pressure
- uniformly distributed load
- key
- contact layer